Wiring the L&NC — Adding Servos

This it the second installment in a series (Part 1) about the build out of Module 1, lower level of the L&NC. This series covers all the basic steps I’m following to install all wiring, electronics and mechanical objects throughout the layout, so in subsequent phases of this project I can focus on the unique aspects of other modules. Step 1 was to install the basic wiring trunks and connection points, create track power distribution nodes then connect track feeders to the nodes.

Step 2

I tested the track with one of my most challenging locomotives—a Broadway Limited EMD E8A DCC with Sound. I say “challenging” because it has two 3-axle trucks, a long wheelbase and no big capacitors to buffer track power, making it susceptible to derailment or operational problems with faulty track.  If this loco can run a stretch of track problem-free, it’s good track!  Naturally I found and fixed a few (cough …. ) places where there were problems.

Correcting track problems for flawless running.

Correcting track problems for flawless running.

After tinkering with the problem zones, I realized that the “course of least resistance” was to rip out and re-lay a few short strips of track. The caulk adhesive track laying method makes this a piece of cake: after cutting the rails, run a long bladed knife under the track section you want to remove and its free in seconds. The ease of fixes really adds incentive to be fussy at this stage and get it right. I had everything in good order in a couple of hours including drying time for fresh caulk adhesive.

Step 3

The next step is to mount the servos running the 9 turnouts on this level. Installing them now is the best way to ensure they have the space they need for normal operation and maintenance.

test loop servo 1 in place

Servo mount on the Test Loop.

I’ve previously done a basic demo of the mounting method I used on the Test Loop. I chose that particular mounting method because it simplified the connection between the servo and the rod connected to the turnout; the rod fits easily but snugly through the hole in the horn. In this mounting method the base plate of the mount provides the fulcrum or pivot point for the rod.

Turnout operation on the Test Loop continues to be 100% reliable. The only issue with that mounting method is that noise is transmitted to the layout through the mount, so servo operation is noisier than it should be.

A New Low Noise, Low Profile Servo Mount

In addition to noise control, the equipment space beneath the layout level is about 1 3/4 deep, the width of a 1″ x 2″ frame member. For both protection and aesthetics, I need all equipment to fit inside that space. The old servo mounting method requires more space than that, and would stick out below the edge of the frame.

The solution is to mount the servo on its side, allowing the horn to rock a rod back and forth setting the turnout points. Several obvious ways to do that came to mind.  But I also wanted to make sure that alignment of the servo is easy and foolproof.

Layout Prep

I drilled holes for the turnout rods when I laid the track. To make installation and alignment of the servo easy, I  drilled the holes so that the rod would be in the 90 degree position (perpendicular to the plywood base) with the points aligned one direction or the other. I tried to keep the holes through the plywood small to serve as fulcrums  (mostly succeeded), then widened the holes in the foam and roadbed beneath the track so the rod can swing between the two positions of the points.

I inserted a 3″ rod cut from 1/16″ music wire (you need a hard wire cutter for this stuff) and made sure the positioning of the rod was correct. The advantage of the music wire is that it can flex without deforming, allowing you to apply pressure to the points.

Fulcrum pad for turnout 5

Fulcrum pad for turnout 5

That said, 1/16″ music wire I’m using is fairly stiff in the short lengths needed here. It is stiffer than the wire typically use with stall motor turnouts, stiff enough that it easily overcomes resistance from the built in springs in the Peco turnouts I’m using on this layout. Many people recommend removing the positioning springs in Peco and similar turnouts, since they can cause turnout movement to pause while overcoming resistance of the spring. Using 1/16″ music wire the servo is able to move a sprung turnout smoothly. I took a few springs out before I realized it was completely unnecessary.

 

At this point I made sure the rods could move the points properly.  In a few cases, the fulcrum hole was a little too large because of sloppy drilling; the easy solution is to fit a plywood plate with a fulcrum hole in the right diameter over the old one.

Servo Prep

Preparing the servo requires testing and setting it to the 90 degree position. Then with the case on its side, orient the output shaft to either the right or left (which ever you need for a given situation) and install a standard single arm horn pointing up, perpendicular to the case.

The offset shaft allows you to select the right orientation. In either case, 0 degrees is 1/4 turn to the right of center, 180 degrees is 1/4 turn left of center.

The offset shaft allows you to select the right orientation. In either case, 0 degrees is 1/4 turn to the right of center, 180 degrees is 1/4 turn left of center.

Here’s a sketch to test the servo by running it from 0 to 180 degrees (the travel of a typical micro servo), then to the required mid-point position:

#include <Servo.h> 
 
Servo myservo;  // global servo object
int midpoint = 90;  // in degrees
int pin = 6; // control pin

void setup() 
{ 
  int i;
  myservo.attach(pin);
  myservo.write(0);
  delay(1000);
  for(i = 1; i <= 180; i++){
    myservo.write(i);
    delay(50);
    }
  delay(1000);
  for(i = 180; i > midpoint; i--){
    myservo.write(i);
    delay(50);
    }
  delay(1000);
  myservo.write(midpoint);
} 
 
void loop() 
{ 
  
}

Mr. Hot Glue Strikes Again

If only micro servos came with side mounting tabs instead of just the ones on top. They do not. To do a side mount like I’m doing you need only fabricate two parts: 1) a strip of .080″ styrene, cut to about 2″ x .5″ and predrilled with holes at each end to accommodate mounting screws; and 2) a piece of 1/32″ brass wire with a loop (a little over 1/16″ inside diameter), a short straight section (about equal to the thickness of a servo horn) leading to a 90 degree bend and a longer straight section.

These two parts allow you to side mount a micro servo, and connect its horn to a rod.

These two parts allow you to side mount a micro servo, and connect its horn to a rod.

First I remove any labels on the side of the servo that attaches to the mount, then I put a dab of hot glue on the servo and press the styrene strip against it, centering and aligning the strip with the built in fins. Then I put a bead of hot glue down each side of the servo where it joins the mounting strip. Its probably overkill, but I want the servos mounted solidly and resistant to torsional stress.

Micro servo glued to a side mounting strip.

Micro servo glued to a side mounting strip.

The brass wire is threaded through the top hole of the horn, with the long leg aligned along the length of the back side of the horn and the loop parallel to the base. Apply dabs of hot glue to adhere the wire to the horn.

Here you can see how the brass wire is glued to the horn, and the turnout rod is threaded through the loop.

Here you can see how the brass wire is threaded through the top hole glued to the horn, and the turnout rod is threaded through the loop. Note the clearance between the rod and the horn.

Installation

Here a servo has been aligned to the motion of the rod, marked on the plywood.

Here a servo has been aligned to the motion of the rod, marked on the plywood.

First it is necessary to determine the plane along which each rod moves; that will depend on the angle of the turnout relative to the rest of the layout.

With the plane of motion marked and the rod set to its 90 degree position, I slip the rod through the loop glued to the horn and place the servo next to the rod, parallel to the plane of the rod. Placing just a little tension on the rod and maintaining even clearance between the horn and rod, I mark and drill mounting holes for the servo. Sometimes its easiest to do one mounting hole, attach the servo at that hole then—after adjusting positioning—drilling the second hole and completing the mount.

After a test fitting, I remove the servo and apply a strip of 3/4″ Rubber Splicing Electrical Tape (Scotch #2242) to the bottom of the mount to inhibit noise transmission. I remount the servo in its final position.

Servos 1, 2 and 9 mount in their final positions.

Servos 1, 2 and 9 in their final positions.

Problems at Turnout 4

The location for turnout 4's servo.

The location for turnout 4’s servo.

Turnout 4’s rod comes down at an awkward spot, close to a frame cross member, the edge of the layout, the main wiring bundle and three feeder sets. The feeders are the main problem; I should have located them further from the turnout. While moving the feeders is an option, I also realized that the fulcrum hole was too large so I was going to have to put in a new fulcrum plate anyway.

The solution I came up with was to fabricate a mounting plate from a couple of pieces of scrap plywood, that would provide a new fulcrum and cantilever over the feeders. Everything screws down so that it is removable and repairable.

Mounting solution for Turnout 4.

Mounting solution for Turnout 4.

 

Turnout 4 Servo Mounted. The horn swings UP in this photo, so the wire bundle below the servo does not interfere.

Turnout 4 Servo Mounted. The horn swings UP to change the position of the points (as oriented in this photo), so the wire bundle below the servo does not interfere. Its snug but effective.

Gathering Servo Positioning Data

At this point it makes sense to test each servo and determine the positions for each point setting.  Each servo installation is different so each one will have unique settings for turnout positions. The size or “looseness” of the fulcrum hole and the length of the rod are the main factors affect servo positioning

On this module and level it takes approximately 20 – 30 degrees movement of the servo to change the points. Once I determined that, it was easy to calculate initial positions that could then be fine tuned for individual installations.

I'm using CadRail's layers to record information. Here I've recorded feeder positions (in red) and turnout servo positioning data.

I’m using CadRail’s layers to record information. Here I’ve recorded feeder positions (in red; turntable area not yet built) and turnout servo positioning data (green). The two positions are “S”, straight or Mainline; and “D”, divergent.

The goal is to have the points firmly pressed against the rails at each end of their travel, without making the servo work so hard it gets noisy. A light hum while the servo is holding a position is OK; but it should not become a loud buzz and the servo should not feel “buzzy” to the touch. Try moving the turnout manually – you should get resistance to moving the points against the servo, but the flex of the music wire should still be evident. Tinker with this for a while and you’ll start to get a feel for it.

Next step is a big one: install the turntable mechanism, install the Roundhouse base, lay track, and so on. Until then, happy railroading!

 

 

 

Wiring Module 1 of L&NC

After a long pause, I’ve starting in on wiring the L&NC by doing the basic wiring on module 1, lower level (each module has two levels). Module one is the largest of the three modules at 54″ long, and is the intended entry point for all the incoming power and control connections. Everything I do here is intended to set the methods and practices for the remaining modules.

Applying Lessons from the Past

Test Loop wiring. Block sensors were added in Phase 2. Phase 3 signals and lighting in progress.

Test Loop wiring. Block sensors were added in Phase 2. Phase 3 signals and lighting in progress.

My early layouts were primitive from a wiring perspective (and other perspectives…. but lets not dwell on that ….). I never did get into the suitcase connector thing, but the old layouts were wired using a single bus pair connecting to feeders every few feet.  Not much to it, so there was not much to organize. Like many layouts, the wiring was somewhat exposed and disorganized underneath.

While I was experimenting on the Test Loop, the wiring was built up in layers without a master plan.  For example, the power distribution from a central barrier strip was fine at first, but later it became necessary to create secondary distribution points to support various power needs. I ended up with wiring  less than optimally organized. On the plus side, I found that small circuit boards with banks of screw terminals are an excellent way to distribute power to to individual feeders or devices.

The other major lesson from the test loop is that it is a pain in the rail to add a major electronic component after everything else has been wired up. Major components should be sited and accounted for before interconnecting anything.  Components that move—e.g., servos, turntable mechanisms or whatever—get priority to ensure they get the placement and space they need — everything else has to adapt to their needs. In this case I will be installing the servos and the turntable early … but I’m getting ahead of myself again.

Special Issues with the L&NC

The L&NC has to be wired with a different aesthetic given that it is intended to be dissembled, moved and reassembled reliably. I am using the Digitrax Empire Builder DCC system, along with my Arduino-based independent control system and a multi-voltage power system supporting the layout — with power provided by a converted computer power supply. Computer power supplies can furnish 300 or more watts of fully regulated power at 12, 5 and 3.3 volts, perfect for every need other than track power.

L&NC Lower Level, Version 2

L&NC Lower Level

The lower level of module 1 (left-most module in the drawing) is fairly complex to wire because it contains the Red Bluffs Yard and the Roundhouse/Turntable complex. Including the feeders needed for the Roundhouse/Turntable area, 24 track feeders with current sensors have to be managed.

Yikes! That’s a lot of feeders for a 54″ x 27″ layout section! Its because of the yard, Roundhouse and turntable. Each roundhouse bay, the turntable bridge and any adjacent track segments adjoining the turntable all need individual feeders; the turntable is a reversing segment. Then each leg of the yard needs feeders, plus the base feeder for the ladder, to support occupancy detection and reliable operation. The main track loops each have two feeders. It all adds up…

So there is a lot more wiring in the L&NC than might be considered normal, and it has to be secure and well organized.

Step 1

With most track laid (I’m deferring the Roundhouse area until the turntable is installed) and the locations of all feeders and turnouts established, the first step is to place the primary distribution nodes then route, terminate and secure the main power bundle, the track bus and the LOCONET bus.

Connection Panel

Connection Panel

At the far left end of the module I placed a connection panel fabricated from styrene. There are four connections:

 

  1. Main power (4 conductors: 12 volt, 5 volt & 3.3 volt, plus ground);
  2. track power connection (2 conductors: Track A & Track B);
  3. LOCONET RJ12 jack (6 conductors); and
  4. Ethernet RJ45 jack (8 conductors).

 

 

My primary color coding scheme:

  • Black = Ground
  • Yellow = 12 volts DC
  • Red = 5 volts DC
  • Blue = 3.3 volts DC
  • Green = Track A (right-hand rail)
  • Violet = Track B (left-hand rail)

For the two power connections, I’m using Anderson Powerpole 15 Amp connectors to create polarized, color coded connectors. 2 connector and 4 connector brackets secure the receiving connection to the panel. I really love these connectors because they are easy to assemble (provided you invest in the crimper), come in a wide variety of colors, allowing you to assemble plugs and matching receptacles that can only be connected together one way. I get my supplies from Powerwerx.com.

Connection Panel, Inside

Connection Panel, Inside

From the panel, the wires run a few inches to a barrier strip.  Here the power is split – one branch going off to feed other parts of this level, with another branch heading to the upper level.

To supply power to the upper level I installed a short piece of PVC pipe from underneath the module, running up next to the corner post, terminating above the bottom edge of the upper level (when installed) I ran wires from the barrier strip up through the pipe, leaving 8″ or so extra cable extending from the top of the pipe, terminated with Powerpole plugs coded for the two power bundles.

Center Barrier Strip

Center Barrier Strip

To get to other areas of the lower level I ran cables from the first barrier, along the edge of the frame, using screw-in eyelets every 6 – 8 inches to channel the cables.  I terminated the cable run at a strip near the middle of the module, then ran an addition  set of cables from the middle strip to the right hand edge of the module.  Leaving 8 inches of slack, I terminated the cables with Powerpole plugs to be connected to a panel on the adjoining module.

The RJ11 jack has leads that I soldered to a six wire cable, then run that cable along the front edge of the module, opposite the power cables, to the location of a Digitrax UP5 universal panel (attached to the frame pending the addition of fascia), terminating the cable with an RJ11 plug as required to attach to theUP5. I fabricated another cable to run from the UP5 to interconnect bundle at the right side of the module.

Track power distribution block with ACS712 current sensors.

Track power distribution block with ACS712 current sensors.

The Ethernet jack on the panel is one end of a prefabricated cable available from Adafruit Industries. The other end will connect to a small Ethernet switch which will install at a later date. From there I’ll  make custom Ethernet cables (my crimper does both 6 and 8 conductor connectors) to fit where needed. Ethernet wiring will be added after I know the location of the Arduinos it will be supporting. I have an 8 port unit ready for the task.

I set up two track power distribution areas with a current sensor for each block, one on each end of the module. At this point I’m keeping the center area clear pending installation of the turntable. A third distribution area will be setup in that area to service the Roundhouse, turntable, service  and approach tracks.

Wiring phase 1

The big picture: wiring step 1 done

Now that the basic wiring is in, its time — finally! — to test the track installation, and fix what ever problems I find before moving on to the next step.  Until then, happy railroading!

Correcting track problems for flawless running.

Correcting track problems for flawless running.